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Final exam for Kwantumfysica 1 - 2006-2007
Thursday 28 June 2007, 9:00 - 12:00

READ THIS FIRST:

o (learly write your name and study number on each answer sheet that you use.

* On the first answer sheet, write clearly the total number of answer sheets that you
turn in.

* Note that this exam has 3 questions, it continues on the backside of the papers!

o Start each question {(number 1, 2, 3) on a new answer sheet.

» The exam 1s open book within limits. You are allowed to use the book by Liboff,
and one A4 sheet with notes, but nothing more than this.

o Ifit says “make a rough estimate”, there is no need to make a detailed calculation,
and making a simple estimate 1s good enough. If it says “caiculate” or “derive”,
you are supposed to present a full analytical calculation.

» If you get stuck on some part of a problem for a long time, it may be wise to skip it
and try the next part of a problem first.

Useful formulas and constants:

Electron mass me =9.1-107 kg
Electron charge e =-1.6-10"C
Planck’s constant h =6626-107Js=4.136-10"" eVs

Planck’s reduced constant % =1.055-102*Js=6.582- 10" eVs

Fourier relation between x-representation and &-representation of a state

w(x) =ﬁj¢(fc)e‘h dk
if‘(k):ﬁj‘l’(x)e'"“dx

2.0.Z.
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Problem 1 - USE DIRAC NOTATION FOR THIS PROBLEM

Consider the double slit experiment in the figure, that is suited for demonstrating
quantum interference of electrons. A very stable and wide electron beam (diameter of
the Gaussian profile is much larger than distance between the slits) is incident on a
thin metal screen with two slits. The electrons in the beam are accelerated and arrive
with a kinetic energy of 5000 eV at the screen. The screen is at x = 0 m. The slits are
at y=-100 pm and y=+100 um, and have a width of 1 um. An electron detector
(counter) is placed far from the screen at positionx=1m, y=0m.

Y

Left trajectory

X
Wide |
electrom | o |
beam Narrow
Phase controller detector

Right trajectory at y=0

The electrons that pass the screen are in a quantum superposition of states that result
from coming out of the left slit, and coming of the right slit. Part of these electrons are
in a state that is directed towards the detector opening. For the left trajectory, this state
is denoted as the state [\W1). For the right trajectory this state is denoted as the state
IWr). At the entrance of the detector, these two states overlap again nearly perfectly,
such that there (‘1 |¥r) = 1.

In the path of one of the slit-detector trajectories a phase controller is placed. The

phase (@) controller is formed by two metal plates that lie parallel to the x-y plane,
closely above and under the beam. The length in x-direction is L. By setting the same
voltage ¥V, (with respect to the screen) on the two plates you can control the potential
energy -e¥, that the electrons experience between the plates, and thereby influence
, the phase difference between electron states in the left and right trajectory of the
setup.

a) Calculate the de Broglie wavelength of the electrons that pass the screen (but
before they enter the phase controller).

b) Derive an expression (use £y as notation for the electron kinetic energy before
entering the phase controller) for the de Broglie wavelength of the electrons while
they are inside the phase controller, with the voltage set at a value ¥, <0 V, but with

-eV¢, < Epp.
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¢) Assume that the phase controller can be operated such that it only influences the
phase of the electron states (that is, no back reflections of electrons on the phase

controller, or reflections to the sides). If the phase controller is off (set to ¥, = 0), the
count rate » of detector is ro = 1000 electrons per second. Derive an expression for

how r depends on ¢, and make a graph of r as a function of ¢ for 0 < @ < 8.

d) Repeat question ¢), but now consider the more realistic situation that due to
reflections (or scattering) on the phase controller, the transmission coefficient of the

entire phase controller is only 7= 0.64 (and independent of ¢).

e) Calculate r for the case that the right slit is closed (blocking all electrons for that
slit, only the left slit open, all other conditions are kept the same).

f) Assume now that the transmission of the phase controllescan be restored to full
transmission (T = 1, that is, assume again the conditions as for question ¢) ). However,
now there is another complication with the setup. There is noise on the control voltage
Vo As a result, setting the phase controller at ¢, results in reality in the situation that
for electrons that are transmitted through the phase controller, the phase @ is in fact
9t Ap. Here Ap is an uncertainty of 5% that takes on a random value, different for
each electron (assume a uniform distribution). Calculate what now the count rate r is

for the case that one aims at setting up ¢ = 2n.

g) Assume again the situation of question f), and make for this situation a graph of r
as a function of ¢ for 0 < @ < 8n. If you do not have an answer for question f), try to
give a qualitative sketch, and explain your answer.

Z.0.Z.
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Problem 2

Consider the following model system for an atom with one electron: A one-
dimensional particle-in-a-box system, where the potential for the electron outside the
box is infinite, and inside the box the potential ¥ = 0. The position of the electron is
described by a coordinate x. The width of the box is a, with the walls at x = -a/2 and
x=+al2.

a) Derive the four energy eigenvalues with the lowest energy, and describe the
corresponding energy eigenstates @,(x).

b) Assume that this system has an electrical dipole moment that oscillates when the
system is emitting a photon. This can occur when the system is in a superposition of

two different energy eigenstates |qpm) and |¢9ﬂ). The operator for this dipole moment

is D=eX, where X the position operator and e the electron charge. Use symmetry
arguments to show that this system cannot emit a photon when it is in a state that 1s a
superposition of two energy eigenstates with the same parity. Hint: use the

x-representation to evaluate (@, |D|@, ).

¢) An electron is in the third excited state of this system (from the four lowest energy
eigenstates, the one with the highest energy). It can (and will) relax to lower energy
eigenstates by spontaneous emission of a photon during the transition to this lower
state. Discuss which relaxation processes are possible, and for each which photon is
(or photons are) emitted, and what the final state is.

Problem 3 - USE x- and k£-representation FOR THIS PROBLEM
Consider a free particle in one dimension (position x) with mass m. At some time
t = 0, the (normalized) state of the particle in x-representation is

-4

=—j:e C (.

a) Give an expression for the Hamiltonian of this system.

¥(x,t =0)

b) What is the time-evolution operator U for this system, in terms of position and/or
momentum operators?

¢) Give an expression for the state of an electron that behaves as a plane wave moving
in the positive x-direction (also a particle in one-dimension).

d) Give an expression that describes the time evolution of state (1) in terms of plane

waves, such that you can describe the state at an arbitrary time ¢ > 0. Explain why it is
useful or not useful to use a Fourier transformation between representations
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